Effects of Strain on Notched Zigzag Graphene Nanoribbons

نویسنده

  • Jack Baldwin
چکیده

The combined effects of an asymmetric (square or V-shaped) notch and uniaxial strain are studied in a zigzag graphene nanoribbon (ZGNR) device using a generalized tight-binding model. The spin-polarization and conductance-gap properties, calculated within the Landauer–Büttiker formalism, were found to be tunable for uniaxial strain along the ribbon-length and ribbon-width for an ideal ZGNR and square (V-shaped) notched ZGNR systems. Uniaxial strain along the ribbon-width for strains≥10% initiated significant notch-dependent reductions to the conduction-gap. For the V-shaped notch, such strains also induced spin-dependent changes that result, at 20% strain, in a semi-conductive state and metallic state for each respective spin-type, thus demonstrating possible quantum mechanisms for spin-filtration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...

متن کامل

Effect of edge structures on elastic modulus and fracture of graphene nanoribbons under uniaxial tension

Qiang Lu and Rui Huang Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712, USA ABSTRACT Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). T...

متن کامل

Nonlinear Mechanical Properties of Graphene Nanoribbons

Based on atomistic simulations, the nonlinear elastic properties of monolayer graphene nanoribbons under quasistatic uniaxial tension are predicted, emphasizing the effect of edge structures (armchair and zigzag, without and with hydrogen passivation). The results of atomistic simulations are interpreted using a theoretical model of thermodynamics, which enables determination of the nonlinear f...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013